Charge injection capacity of ferroelectric microelectrodes for bioelectronic applications

نویسندگان

چکیده

We analyze the extracellular stimulation current and charge injection capacity (CIC) of microelectrodes coated with an insulating layer to prevent toxic electrochemical effects in bioelectronic applications. show for a microelectrode ferroelectric that polarization contributes current. Depending on remanent Pr ferroelectric, switching regime can increase CIC by up two orders magnitude as compared commonly used capacitive are dielectric layer.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Stable PEDOT:PSS Coating on Gold Microelectrodes with Improved Charge Injection Capacity for Chronic Neural Stimulation

This study introduces two new processes that highly enable PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) as stable coating material for chronic neural stimulation. In first process, strong mechanical bonding between PEDOT:PSS coating and gold electrodes is achieved by creating rough porous surface with partial iodine etching. PEDOT:PSS coating on iodine etched gold electro...

متن کامل

Interfacing nanomaterials for bioelectronic applications

The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...

متن کامل

Graphene field effect transistors for bioelectronic applications

The development of the future generation of neuroprosthetic devices will require the advancement of novel solid-state sensors with a further improvement in the signal detection capability, a superior stability in biological environments, and a more suitable compatibility with living tissue. Due to the maturity of Si technology, Si-based MOSFETs have been extensively used in previous decades for...

متن کامل

Materials for Bioelectronic and Biomedical Applications

International customers, contact your local Sigma-Aldrich office (sigma-aldrich.com/worldwide-offices). and SUPELCO are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. FLUKA is a trademark of Sigma-Aldrich GmbH, registered in the US and other countries. Material Matters is a trademark of Sigma-Aldrich Co. LLC. Sigma brand products are sold through Sigma-Aldrich, I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2021

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0049202